

**AS Science** 

**Student sheet** 

# TUNNELWORKS AS CHEMISTRY STUDENT SHEET

# What's the enthalpy change when cement hydrates?

Concrete uses cement as the 'glue' that binds sand and aggregates together. Cement is a mixture of compounds, typically:

| Tricalcium silicate         | 50%                                |
|-----------------------------|------------------------------------|
| Dicalcium silicate          | 25%                                |
| Tricalcium aluminate        | 10%                                |
| Tetracalcium aluminoferrite | 10%                                |
| Gypsum                      | 5% (controls the rate of reaction) |

The tricalcium and dicalcium silicates make up the bulk of the cement and provide its long-term strength as they hydrate over time.

.....

## Calculate the change in enthalpy during the hydration of tricalcium and dicalcium silicates.

#### Experimental method

A measured mass of each compound was added to sufficient water in a beaker placed in an insulated water bath. The water bath contains 1200g water. A temperature probe linked to a data logger measured the maximum temperature rise over time. This was repeated four times for each compound.

#### **Experimental data**

| For 344g Ca <sub>2</sub> SiO <sub>4</sub> |                  | For 456g Ca <sub>3</sub> SiO <sub>5</sub> |     |                  |            |
|-------------------------------------------|------------------|-------------------------------------------|-----|------------------|------------|
| Run                                       | Starting temp °C | Final temp <sup>o</sup> C                 | Run | Starting temp °C | Final temp |
| 1                                         | 25.1             | 36.9                                      | 1   | 25.1             | 36.9       |
| 2                                         | 24.9             | 36.5                                      | 2   | 24.9             | 36.5       |
| 3                                         | 25.0             | 36.8                                      | 3   | 25.0             | 36.8       |
| 4                                         | 24.8             | 36.4                                      | 4   | 24.8             | 36.4       |

## **Background data**

c for  $H_2O = 4181 \text{ Jkg}^{-1}$  Atomic masses: Ca = 40, Si = 28, O = 16  $2Ca_2SiO_4 + 5H_2O > 3CaO.2SiO_2.4H_2O + Ca(OH)_2 + heat$  $2Ca_3SiO_5 + 7H_2O > 3CaO.2SiO_2.4H_2O + 3Ca(OH)_2 + heat$  ٥C